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Abstract

A ®nite strain ®nite element method is used to examine the residual stresses in a cup-shaped powder compact. Two

rate-independent strain hardening porous material models are used: the combined material model (Fleck, N.A., Kuhn,

L.T., McMeeking, R.M., 1992a. J. Mech. Phys. Solids 40 (5), 1139±1162) and a material model which includes the

dependency of inter-particle cohesive strength (Fleck, N.A., 1995. J. Mech. Phys. Solids 43, 1409±1431). The residual

stress state in the unloaded cup is highly dependent on the compaction process and less dependent on the ejection route.

The maximum principal stress plotted during ejection shows that higher stresses are found during the ejection process

than those found in the completely unloaded specimen. The degree of inter-particle cohesive strength has hardly any

e�ect on the porosity distributions in the compacts but it has a strong in¯uence on the stress state in the cups before

unloading. However, after unloading, the stress states become quite similar in the two types of materials. Ó 2001

Elsevier Science Ltd. All rights reserved.

Keywords: Metal powder; Compaction; Residual stresses; Inter-particle cohesion

1. Introduction

Cold compaction of metal powders is widely used in industries. The ability to produce the required shape
and dimensions of a component with very little or without subsequent machining is the main advantage
compared to other production processes. The manufacture of a powder compacted component may
roughly be divided into two steps. The ®rst step is the compaction of the metal powder and the focus in the
present work will be on cold die compaction where plastic deformation of the powder particles is the major
deformation process. The second step is heat treatment or sintering of the compact in order to weld the
powder particles together so that the component attains the desired strength. Hence, prior to sintering, the
component is very fragile and fracture of the component may occur during ejection from the die.

In the beginning of the compaction process, the porous aggregate typically consists of distinct powder
particles. Later in the process, the particles have deformed, and porosity now exists in the form of isolated
voids. Based on the earlier work by Artz, Ashby and co-workers (Fischmeister et al., 1978; Artz, 1982; Helle
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et al., 1985), Fleck et al. (1992a) proposed a micromechanically based particle model hereafter referred to as
the FKM model. This model is appropriate at high porosities whereas the model of Gurson (1977) is
pertinent for low porosities. In the transition range, a linear combination of the two models is used. This
combined material model has been used earlier to study powder compaction of various simple geometries
(Redanz, 1998) and the compaction of a cup (Redanz, 1999). In the latter, porosity dependence as well as
applied load dependence on parameters such as matrix material behaviour, friction between mould and
powder material, inter-particle cohesive strength, and di�erent compaction schemes are studied. Neither
Redanz (1998) nor Redanz (1999) considers the evolution of stresses during ejection or unloading. The
material model has also been used to study ductile failure of a porous solid (Redanz et al., 1998; Redanz
and Tvergaard, 1999).

In the present work, the compaction of the powder into a cup shape and the subsequent ejection of the
cup have been modelled with a ®nite element programme in order to ®nd the residual stress distribution in
the green compact. Furthermore, the maximum principal stress during compaction and ejection has been
determined to give insight into the risk of fracture during the process. Di�erent compaction and ejection
routes have been studied by varying the speed ratio of the punches. A straightforward method to model
unloading of a compact numerically is to decrease the value of the nodal forces at the boundary to zero
stepwise. In practice, one or more punches from one end of the compact are removed, and subsequently, the
compact is ejected from the die by the punch at the other end. Both unloading and ejection are studied in
the present paper.

Most material models in the literature are validated by comparing the porosity distribution from the
model with experimental results. However, it has been shown (Redanz, 1999) with a modi®ed version of the
material model of Fleck (1995) that, before unloading, the porosity distributions are almost independent of
the degree of inter-particle cohesion whereas the von Mises stress level is higher for a cohesionless compact
than a compact with full inter-particle cohesion. The opposite tendency is noted for the e�ect of cohesion
upon the hydrostatic pressure prior to unloading. Thus, justifying the use of a particular model by com-
paring density measurements with computational predictions may not be a critical test. More discrimi-
nating tests need to be devised which would allow the suitability of a given model to be determined. In the
present work, the compacted cups are unloaded and the distribution of residual stresses is determined as a
function of cohesion in order to determine whether the di�erence in stress states during compaction also
exists after ejection from the die.

2. General equations

The analysis is based on a convected co-ordinate Lagrangian formulation of the ®eld equations where gij

and Gij are the metric tensors in the reference and current frame, respectively, with determinants g and G.
Here, the initial state is taken as reference. The Lagrangian strain tensor, gij � 1=2�Gij ÿ gij�, in terms of the
displacement components on the reference base vectors, ui, is expressed by

gij � 1
2
�ui;j � uj;i � uk

;iuk;j� �1�

in which � �;i denotes the covariant derivative.
Equilibrium is expressed in terms of the principle of virtual work which with body forces neglected takes

the formZ
V

sij dgij dV �
Z

S
T i dui dS: �2�

Here, V and S are the volume and surface in the reference con®guration and T i are the components of the
speci®ed tractions per unit area in the reference con®guration on the reference base vectors
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T i � �sij � skjui
;k�nj �3�

with nj as the components of the surface normal in the reference state. The relation between the Kircho�
stress tensor, sij, and the Cauchy or true stress tensor, rij, is given by

sij �
���������
G=g

p
rij; �4�

where G=g denotes the volume change in the porous material.
The incremental constitutive relations for time-independent plasticity are of the form,

_sij � Lijkl _gkl; �5�
where Lijkl are the instantaneous moduli and � � denotes di�erentiation with respect to a loading parameter.

The uniaxial true stress±logarithmic strain curve of the matrix material is expressed by the piecewise
power law hardening expression

� � r=E; r6 ry;
ry

E � r
ry
�n; r > ry;

�
�6�

where � is the logarithmic strain, r is the true stress, ry is the uniaxial yield stress and n is the strain
hardening exponent. The material approaches an elastic-perfectly plastic material for very large n.

Contact and friction between the powder and the tool play an important role in the powder compaction
process. The contact between the powder and the die (or the punch) is modelled by a penalty method using
elastic springs of high sti�ness, see e.g. Tvergaard (1990). When the material is in contact with the die or
punches, the state of friction may be either sticking or sliding. Sticking contact is modelled the same way as
the contact constraint, whereas frictional sliding is modelled by the following expression

Tt � ÿsgn� _ut�lTn jlTnj < ry=
���
3
p

sgn� _ut�ry=
���
3
p jlTnj > ry=

���
3
p

�
for _ut 6� 0; Tn < 0: �7�

Here, Tn and Tt are the normal and tangential tractions, respectively, _ut is the incremental displacement
di�erence in the tangential direction and l is the friction coe�cient. At lower normal pressures, the
Coulomb friction model is used. However, at normal pressures where lTn exceeds the shear yield stress of
the material, the friction stress is kept constant. The chosen upper limit for the friction stress, ry=

���
3
p

, is an
approximation and neglects any dependency upon porosity and strain hardening of the material.

3. Porous material models

3.1. Combined FKM and Gurson material model

The microstructure of the porous aggregate changes during compaction. In the beginning of the process,
the aggregate consists of loose powder particles whereas later in the process the particles have deformed and
a void-like morphology appears.

At high porosities, f > f1, a particle-based material model, the FKM model of Fleck et al. (1992a), is
used. It assumes that spherical particles in point contact form the porous material and has the yield
function

UFKM � 5

18

re

py

�
� 2

3

�2

�
���
5
p

3

1
3
rk

k

py

 !2

ÿ 1 � 0 �8�
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with the macroscopic e�ective von Mises stress given by re � �3sijsij=2�1=2
in which sij � rij ÿ Gijrk

k=3 is the
stress deviator, rM is the current yield stress of the matrix material and py denotes the yield strength of the
porous material under hydrostatic loading:

py � 2:97�1ÿ f �2 f̂ ÿ f

f̂
rM: �9�

The highest possible porosity in this model is f � f̂ � 0:36, corresponding to the dense random packing of
equi-sized spheres (Helle et al., 1985). At lower porosities, the contacts start to interact and the particles
become less spherical in shape. Thus, the FKM model is valid at higher porosities only.

The second material model in the combined model is an elastic-strain hardening plastic version of the
model of Gurson (1977). This model is used upon porosities lower than f2, f < f2, and has the following
form:

UGurson � r2
e

r2
M

� 2q1f cosh
q2

2

rk
k

rM

� �
ÿ 1
�
� �q1f �2

�
� 0: �10�

Here, q1 and q2 are adjustable parameters suggested by Tvergaard (1981, 1982), and following his rec-
ommendation, are set to 1:5 and 1:0, respectively, in the present study. The Gurson model is based on the
assumption that porosity exists in the form of spherical voids and the model reduces to J2 ¯ow theory when
f � 0.

In the transition range, f1 > f > f2, a linear combination of the FKM and Gurson models is used with
the yield criterion

Ucomb � WFKMUFKM � WGursonUGurson � 0; �11�
where the weight functions are given by WFKM � �f ÿ f2�=�f1 ÿ f2� and WGurson � �f1 ÿ f �=�f1 ÿ f2�. The
parameters de®ning the transition range are chosen as (Fleck et al., 1992a), f1 � 0:25 and f2 � 0:1.

3.2. Material model with variable inter-particle cohesion

Many compaction models (e.g. Gurson, 1977; Shima and Oyane, 1976; Fleck et al., 1992a) assume that
the porous material has equal tensile and compressive strengths, partly because these models have been
developed for the study of ductile fracture. Other models assume a vanishing or a small cohesive strength
between the particles, e.g. soil mechanics models such as the Cam±Clay model (Scho®eld and Wroth, 1968)
or the Drucker±Prager model (1952). In the compaction of metal powders, the inter-particle cohesive
strength lies between these ideal limits. Fleck (1995) proposed a material model with a variable degree of
inter-particle cohesion and introduced the cohesion factor, g, for which fully sticking contacts are obtained
when g � 1 and zero cohesive strength is present at g � 0. In order to obtain a yield surface in closer
agreement with experimental compaction studies of copper powder (Akisanya et al., 1997), a modi®ed
version of material model of Fleck (1995) with variable inter-particle cohesion was suggested (Redanz,
1999). This modi®ed approximate yield surface has the following form:

U � 5

18

re

py

�
� 2

3

�2

�
���
5
p

3

1
3
rk

k

py

 !2

5

9
�1ÿ g� 1

�
�

1
3
rk

k

py

ÿ 1

3

re

py

�
ÿ 1 � 0: �12�

At fully sticking contacts, g � 1, the modi®ed yield surface reduces to the FKM yield surface. The modi®ed
model (12) is valid at higher porosities only since the combined form (11) with the Gurson model is no
longer physically consistent at low porosities.
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3.3. Basic porous material equations

The direction of the plastic strain is assumed to be normal to the yield surface

_gP
ij � K

oU
orij

; �13�

where K is the plastic multiplier and oU=orij gives the direction of the plastic ¯ow. The initiation of plastic
yielding occurs when U � 0 and _U > 0. During plastic yielding, the consistency condition must be ful®lled

_U � oU
ore

_re � oU
ork

k

_rk
k �

oU
of

_f � oU
orM

_rM � 0 �14�

in which the evolution equation for _rM is found from equivalent plastic work to be of the form

_rM � EEt

E ÿ Et

rij _gP
ij

F �f �rM

: �15�

Here, Et is the slope of the uniaxial true stress±logarithmic strain curve for the matrix material, and F �f �
represents the volume fraction of deforming material, which depends on the yield criterion used. The
contribution from the elastic part of the strain to the total change in volume is neglected compared to the
plastic contribution. Hence, the change in porosity may be written

_f � �1ÿ f �Gij _gP
ij: �16�

Using Eqs. (13)±(16), the plastic multiplier, K, is found, and Eq. (13) can be written in the form

_gP
ij �

1

H
oU
orij

oU
orkl

r
rkl �17�

with r
rkl as the Jaumann rate of the Cauchy stress tensor and

H � ÿ oU
of
�1

�
ÿ f �Gij � oU

orM

EEt

E ÿ Et

rij

F �f �rM

�
oU
orij

: �18�

The total strain is taken to be the sum of the elastic and plastic parts. Thus, from the elastic constitutive
relations (see e.g. the hypo-elastic relations in Hutchinson (1973)) and Eq. (17), the instantaneous moduli
from Eq. (5) are determined.

The dependence of the elastic parameters on porosity can normally be neglected in the modelling of
powder compaction because the plastic strains overwhelm the elastic strains. However, when ejection of the
specimen from the die is studied, elastic unloading of the material occurs, and thus, the elastic material
properties are important. In the present work, Poisson's ratio is assumed to equal that of the matrix
material, m � mM, and Young's modulus, E, is assumed to depend linearly on porosity,

E � Ei � �EM ÿ Ei� f̂ ÿ f

f̂
; �19�

where EM is Young's modulus of the matrix material and Ei is Young's modulus of the porous aggregate at
f � f̂ ; the latter is set here to Ei � 0:0014EM. This assumption di�ers slightly from the dependence used by
Fleck et al. (1992b) in the sense that the sti�ness of the porous aggregate is not equal to zero at dense
random packing, f � f̂ , but is slightly higher. By choosing a ®nite initial modulus, Ei, the computation time
is decreased signi®cantly and numerical di�culties are avoided. As a consequence, the early elastic stage of
the compaction (at porosities close to f � f̂ ) is not modelled, but as the plastic deformation is dominant in
the present work, this has nearly no in¯uence on the results; see also Mesarovic (1999).
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4. Numerical method

In the current state, rij, gij, etc. satisfy the equilibrium which is expressed in terms of the principle of
virtual work (2). An incrementally linear, forward extrapolation scheme is used to determine the incre-
mental values, _rij, _gij, etc. Thus, the principle of virtual work is extended about the current state to the
incremental formZ

V
_sij dgij

n
� sij _uk

;iduk;j

o
dV �

Z
S

_T i dui dS ÿ
Z

V
sij dgij dV

�
ÿ
Z

S
T i dui dS

�
�20�

with body forces neglected. The term in square brackets corresponds to the principle of virtual work in total
form (2) and thus should equal zero. It is included here in order to prevent the numerical solution from
drifting away from equilibrium due to an accumulation of incremental errors.

The axisymmetric compaction tool and powder material are modelled numerically as shown in Fig. 1(a).
The three punches, P1, P2, and P3, may be moved independently at di�erent speeds. The powder is ®lled into
the mould while it is turned upside down, so that, due to gravity, the powder initially forms a cup shape.
Overviews of the die movement sequences in the various compaction and ejection routes are listed in Tables
1 and 2, respectively.

One of the initial ®nite element meshes is shown in Fig. 1(b). Each mesh used in the present study
consists of 396 isoparametric, eight-noded elements with a total of 1279 nodes. Each element contains four
integration points. For all of the results presented, the powder material is characterized by the material
parameters, ry=E � 0:003, n � 10, m � 1=3, and the initial porosity is f � 0:35. The value of the friction
coe�cient, l, from Eq. (7) has been found experimentally for the compaction of a simple cylinder by Kim
et al. (1996) to be 0:17, and this value is used here.

Fig. 1. (a) The axisymmetric compaction model consists of a die and three individual punches P1, P2 and P3, (b) the initial ®nite element

mesh used for compaction I consists of 396 isoparametric eight noded elements with a total of 1279 nodes.
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5. Results

5.1. The ®rst stage of the process: compaction

The porosity distributions in the powder compacts due to three di�erent compaction routes are shown in
Fig. 2. The outlines of the initial cup geometries are shown with dotted lines, whereas the deformed cup
shapes after unloading are marked with solid lines. In Fig. 2(a), punches P1 and P3, from Fig. 1(a), are
moved with the same speed, while the inner punch, P2, is held still. This compaction route is referred to as
`compaction I' in the following. In `compaction II', the punch on the wall of the cup, P3, is moved with half
the speed of the punch at the bottom of the cup, P1, while P2 is held ®xed; the resulting porosity distribution
is shown in Fig. 2(b). In `compaction III', the punch P3 is moved with twice the speed of P1, while P2 is
®xed; see Fig. 2(c) for the resulting porosity distribution. The initial volume of each cup is the same,
whereas the initial geometry di�ers in each case in order to obtain the same geometry and volume of the
specimens after compaction. For the initial geometries of the cups, see Table 3. The cups have been
compacted to a volume change DV =V0 � 0:22, where DV is the di�erence between initial and current vol-
ume, and V0 is the initial volume of the cup, see also Table 1.

It should be noted that the porosity distributions change only slightly during unloading and do not
therefore depend on how the cups are ejected from the die. Hence, the elastic spring-back e�ect is negligible
in the present study.

In all the three cases, regions with highly compacted material develop at the corners between punches
and die wall due to friction. The e�ect of double-action pressing is also seen in each of the porosity dis-
tributions. In Fig. 2(a), a region with less compacted material appears in the cup wall midway between the
upper and lower punches. A similar region of reduced compaction exists higher up the cup wall in Fig. 2(b)
and lower down the cup wall in Fig. 2(c): the precise location depends on the velocity ratio between P1 and
P3. Due to the geometry of the cup as well as the double action compaction scheme, a region with packed
material at the bottom in the inside of the cup, see point A in Fig. 2(a), and a less compacted region in the
cup wall on the vertical face adjacent to the corner, see point B, are formed. When P1 is moved faster than
P3, compaction II in Fig. 2(b), this e�ect becomes more dominant, whereas it is almost avoided in Fig. 2(c)
where P1 is moved with half the speed of P3, compaction III. In general, the porosity gradients in case of
compaction II are higher compared to compaction I whereas compaction III results in the most uniform

Table 1

The various sequences of die movement in Compactions I±III on the left side of the tablea and the total displacements of the punches on

the right side of the table

Displacement of punches Total displacements

P1 P2 P3 Figs. 2±7 Figs. 8±11

Compaction I uI 0 uI uI=R � 2:00 ±

Compaction II uII 0 1
2
uII uII=R � 2:51 ±

Compaction III uIII 0 2uIII uIII=R � 1:42 uIII=R � 0:96

a The die wall is held ®xed at all times.

Table 2

An overview of the various sequences of die movement in Ejections I and II a

Step 1 Step 2 Step 3

Ejection I P1 is taken o� P2 and P3 eject the cup P2 is taken o�

Ejection II P3 is taken o� P1 ejects the cup P2 is taken o�

a The die wall is held ®xed at all times.
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porosity distribution of the three. As shown in Redanz (1999), the average porosity decreases during
compaction, whereas the way this porosity is distributed remains approximately the same until fully dense
regions are formed. Under continued loading, these fully dense regions spread until full densi®cation is
obtained. However, full densi®cation is rarely obtained in practice.

5.2. The second stage of the process: ejection

In the practical powder compaction process, the powder is mixed with a binder to bond the particles
together in order to obtain some degree of inter-particle cohesion. This minimizes the risk of fracture of the
compact during the subsequent ejection. During the compaction process, the areas of particle contacts weld
together and form metallurgical bonds (Dowson, 1990). However, these bonds are fairly weak at process

Fig. 2. Curves of constant porosity, f , as results of three di�erent compaction routes at DV =V0 � 0:22: (a) Compaction I, P1 and P3 are

moved with the same speed while P2 is ®xed, (b) Compaction II, P3 is moved with half the speed of P1 while P2 is ®xed and (c)

Compaction III, P3 is moved with twice the speed of P1 while P2 is ®xed.

Table 3

The various initial cup geometries used for Compactions I to III a

Initial cup geometries

Ri=R Ro=R Hi=R Ho=R

Compaction I 5 9 12 19

Compaction II 5 9 11.26 18.77

Compaction III 5 9 12.84 19.26

a The parameters are de®ned in Fig. 1(b).
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temperatures lower than 0.3 times the absolute melting temperature of the powder material (cold com-
paction). Hence, in the present study, brittle fracture during ejection is likely to occur depending on the
maximum principal stress, max�ri�.

The simplest way to develop residual stresses in a numerical simulation of compaction is to reduce the
nodal forces at the boundary stepwise to zero; in the following, this is referred to as boundary unloading.
The maximum principal stress normalized by the initial yield stress of the matrix material in tension,
max�ri=ry�, is shown for the three di�erent compaction routes and subsequent boundary unloading in Fig. 3.
Unless otherwise stated, the point at which the maximum principal stress occurs is located at the inner
rounded corner of the cup. The solid line, representing compaction I, shows that the maximum principal
stress oscillates about zero during compaction. During boundary unloading, the normalized stress increases
from about zero to approximately 0.4. At each point where the curves change abruptly, either the location
at which the maximum stress has occurred changes or the direction of the maximum principal stress
changes. When compaction II is used, the maximum principal stress is tensile throughout the compaction
process and it increases to max�ri=ry� � 0:95 during boundary unloading which may result in the formation
of a crack at the rounded, inner corner of the cup. During compaction III, the stress is compressive
throughout the process and reaches 0:15ry after boundary unloading. As concluded from the discussion of
Fig. 2, compaction III is the optimal compaction route of the three.

In practice, unloading the specimen after die compaction as described above is not possible. The ejection
and handling of the fragile green specimen is often the weakest link in the process of a powder metallurgy
component. The maximum principal stress for the three compaction routes and the subsequent evolution of
the stresses during ejection are shown in Fig. 4. The ejection route, referred to as ejection I, goes as follows:
®rst, P1 is removed, followed by ejection of the specimen from the die by P2 and P3. Finally, the inner
punch, P2, is taken out of the cup.

When P1 is removed, the maximum principal stress remains approximately zero in the case of com-
paction I until right before the punch is completely removed. Then, the stress increases abruptly to

Fig. 3. The maximum principal stress, max�ri=ry�, in the specimen during three di�erent compaction routes and subsequent boundary

unloading.
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max�ri=ry� � 0:35. During the ejection of the specimen from punches P2 and P3, the stress increases to a
peak value, max�ri=ry� � 0:43, and decreases afterwards to 0.35. The peak value is reached when the
bottom of the cup is about halfway out of the die. The pressure between the specimen and the punch, P2, is
reduced to zero during the ejection, thus, the stress state does not change upon ®nal removal of P2. The
small oscillations of the curve are due to the discreteness of the ®nite element mesh; each oscillation cor-
responds to a node losing contact with the die wall. This contact transition has been eased by rounding-o�
the edge of the die wall with a radius equal to 1:30Ho. A smaller radius results in oscillations of higher
amplitude and vice versa.

When P1 is taken-o� after compaction II, the maximum principal stress increases; thereafter, the maxi-
mum principal stress remains fairly constant at the same level as was found for boundary unloading,
max�ri=ry� � 0:95, during ejection from the die.

The high compressive stress after compaction III decreases until it reaches zero when P1 is removed. After
having plateaued at zero, the stress increases in tension to max�ri=ry� � 0:15 just before P1 is completely
removed, as was also seen for compaction I. A minor stress peak is reached in the beginning of the ejection
and a larger stress peak is attained at the end of the ejection. Again, the oscillations are due to the dis-
creteness of the mesh. As mentioned above, the maximum principal stress is mostly located at the inner,
rounded corner of the cup, see label A in the insert to Fig. 4. However, the large stress peak at the end of
ejection is located in the cup wall in the region following the edge of the die wall as the specimen is ejected,
see label B. This stress increase might easily result in a chipped corner at the top of the cup wall. The stress
concentration by the edge of the die wall is also present in the two other cases, but the trajectories in Fig. 4
refer to the stress state at the inner corner since it is largest. Removal of the inner punch, P2, hardly changes
the stress state. In practice, it is sometimes necessary to eject the specimen from the die with the relative
positions of all punches held ®xed; subsequently, the punches are taken-o�. This reduces the tensile stresses
during ejection and damage or fracture of the component may be avoided. Furthermore, the edge of the die
wall is rounded-o� in order to minimize stress concentrations like that in point B, (Fig. 4). This is also done
in the present numerical study.

Fig. 4. The maximum principal stress, max�ri=ry�, in the specimen during three di�erent compaction routes and subsequent unloading,

ejection I.
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The stress states in the three specimens after ejection I are shown in Fig. 5. Curves of constant maximum
principal stress normalized by the yield stress of the matrix material, max�ri=ry�, are shown for compaction
I, compaction II, and compaction III in Fig. 5(a)±(c), respectively. For the case of compaction I, the maxi-
mum principal stress attains a maximum value, max�ri=ry� � 0:30, at the inner, rounded corner and is
close to zero elsewhere. The stress distribution as a result of compaction II is similar qualitatively but is
more extreme in value. Here, the principal stress attains values up to 0:9ry, with a maximum value at the
inner, rounded corner. Also, a stress concentration in the inner, upper edge of the cup wall is present.
Compaction III results in a fairly uniform maximum principal stress distribution and close to zero in
magnitude.

In Fig. 6, the evolution of the maximum principal stresses during the ®rst compaction route, compaction
I, and di�erent subsequent types of unloading are shown. The boundary unloading and ejection I have
already been described above; Ejection II refers to the following: P3 is taken-o�, P1 ejects the cup from the
die and then P2 is taken out. Removal of P3 in the ®rst stage of ejection II results in a larger maximum
stress than removal of P1 in the ®rst stage of ejection I. While P1 ejects the cup from the die in ejection II,
this high stress remains fairly constant. Unlike ejection I, the removal of the inner punch, P2, in ejection II
leads to a stress decrease. The boundary unloading results in a higher ®nal maximum principal stress
compared to both ejection routes; however, this stress value is lower than the peak stress observed during
ejection I.

The in¯uence of the di�erent ejection routes on the residual stress distributions in the powder compacts
obtained with compaction I is illustrated in Fig. 7. It is seen that the distributions for ejection I, Fig. 5(a),
and boundary unloading, Fig. 7(a), are almost identical, whereas the stress state in the cup after ejection II,
Fig. 7(b), di�ers from the two others. When P1 ejects the compact in ejection II the separation of the inner
punch, P2, and the ejecting punch, P1, is ®xed. Thus, the cup is subjected to an applied stress in the axial

Fig. 5. Curves of constant maximum principal stress, max�ri�=ry, at DV =V0 � 0:22, after three di�erent compaction routes and

subsequent unloading, ejection I.
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direction during ejection which is not the case in ejection I. For ejection II, this results in higher maximum
principal stresses in the bottom of the cup and a region with entirely compressive stresses just below the
inner rounded corner of the cup. Furthermore, a stress concentration develops in the corner between the die

Fig. 7. Curves of constant maximum principal stress, max�ri�=ry, at DV =V0 � 0:22, after compaction I and two di�erent unloading

paths, boundary unloading and ejection II.

Fig. 6. The maximum principal stress, max�ri=ry�, in the specimen during compaction, compaction I, and three di�erent unloading

routes.
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wall and the ejecting, lower punch, P1. For all three ejection routes, the residual maximum principal stresses
in the cup walls are mainly tensile but with an enclosed region with material in compression. Ejecting the
specimen from one side or the other a�ects the residual stress distribution in the present case. However, this
is mainly due to the externally applied axial pressure from the inner punch, P2, during ejection II. In
summary, the simple boundary unloading method provides a useful guide in predicting the residual stress
distribution but it does not capture the evolution of the maximum principal stress during ejection which
may exceed the ®nal value in the specimen when completely ejected from the tool.

5.3. The e�ect of inter-particle cohesive strength

The e�ect of inter-particle cohesive strength is now studied with the modi®ed material model (Fleck,
1995; Redanz, 1999). This model is not combined with the Gurson model, thus, it is valid at high porosities
only. The optimal compaction route from the above study, compaction III, has been used to compact two
cups of powder materials with di�erent inter-particle cohesive strengths to a volume change, DV =V0 � 0:14.
After compaction, the porosity distributions are very similar to the one shown in Fig. 2(c), whereas the
average porosity is higher due to the lower degree of compaction.

The von Mises stress distributions in the cups before unloading are shown in Fig. 8. A material with fully
sticking contacts between the powder particles, g � 1, is shown in Fig. 8(a), and a material with a low
cohesive strength, g � 0:2, is shown in Fig. 8(b). It is seen that the relative distributions are somewhat
similar to each other: stress concentrations in the corners between the punches and die wall and at the
rounded edge at the inside of the cup. However, the stress level in the material with fully sticking contacts is
much higher compared to the low cohesive strength powder material. The opposite is the case for the
hydrostatic pressure in the cup before ejection. A similar result was seen in Redanz (1999). As both the von

Fig. 8. Curves of constant von Mises stress, re=ry, at DV =V0 � 0:14 after compaction III before unloading: (a) fully sticking contacts

between the powder particles, g � 1 and (b) low inter-particle cohesive strength, g � 0:2.
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Mises stress and the hydrostatic pressure lead to plastic yielding in a porous solid, it is not surprising that
similar porosity distributions can develop in compacts of materials with di�erent inter-particle cohesive
strengths even though the stress states are di�erent.

The maximum principal stress in the cups during the process is shown in Fig. 9. It is seen that the
stresses in both cases are compressive throughout the compaction. The maximum principal stress in the
material with low cohesive strength is signi®cantly lower than the stress in the fully sticking contacts
powder material. After boundary unloading, it is seen from Fig. 9 that the ®nal maximum principal stress
value in the low cohesive material specimen is tensile and higher than the ®nal value in the cup of fully
sticking contacts powder material. A low tensile stress in a material with little cohesive strength may
rapidly lead to fracture. The stress in the fully sticking material also goes slightly into the tensile region, but
as the material has a high cohesive strength in tension this is of less concern. Throughout both compaction
and unloading of the two types of material, the maximum principal stress was located at the inner rounded
corner of the cup.

The e�ective stress, re=ry, in the cups after boundary unloading are shown in Fig. 10. Both the level and
the distribution of the von Mises stress are strikingly similar in the two types of material unlike the stress
states before unloading, compare with Fig. 8. Upon unloading, a stress concentration is present in the outer
side of the cup wall midway between the upper and lower punches in the region with less compacted
material. A stress concentration is also present at the inner rounded corner of both cups. For the material
with full cohesive strength between the particles, g � 1, (Fig. 10(a)), the maximum von Mises stress is
located slightly lower than for the case with g � 0:2, (Fig. 10(b)).

Finally, the maximum principal stress contours in the unloaded cups are shown in Fig. 11(a) and (b) for
the material with fully sticking contacts, g � 1, and the material with low inter-particle cohesive strength,
g � 0:2, respectively. In both cases, the maximum principal stresses in the cups are close to zero except in
the region at the inner rounded corner.

Fig. 9. The maximum principal stress , max�ri=ry�, in the specimen during compaction, Compaction III, as well as boundary unloading

for a material with fully sticking contacts between the particles, g � 1, and a material with a low inter-particle cohesive strength,

g � 0:2.
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Fig. 10. Curves of constant von Mises stress, re=ry, at DV =V0 � 0:14 after compaction III and subsequent boundary unloading: (a) fully

sticking contacts between the powder particles, g � 1 and (b) low inter-particle cohesive strength, g � 0:2.

Fig. 11. Curves of constant maximum principal stress, max�ri�=ry, at DV =V0 � 0:14 after compaction III and subsequent boundary

unloading: (a) fully sticking contacts between the powder particels, g � 1 and (b) low inter-particle cohesive strength, g � 0:2.
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6. Discussion

The porous materials used in cold powder compaction are not able to carry large tensile stresses because
of the weak bonds between the powder particles. If a region in the porous aggregate is subjected to tensile
stresses above a certain limit, brittle fracture is likely to occur depending on the maximum principal stress.

We conclude, that compaction with a velocity ratio between the punches P1 and P3 corresponding to the
ratio of the height of the bottom of the cup, Ho ÿ Hi (see Fig. 1(b)), and the height of the cup wall, Hi,
results in the most uniform and therefore optimal residual stress distribution. The way in which the cup is
ejected is of less consequence for the ®nal residual stress state. However, during the ejection process,
maximum principal stresses occur which are higher than the ®nal maximum stress in the unloaded speci-
men. In particular, the optimal compaction route among the three possibilities presented, compaction III,
followed by ejection I results in a maximum principal stress during the ejection process which is twice as
high as the ®nal value (see Fig. 4). During most of the compaction and ejection processes, the maximum
principal stress is located in the region at the inner, rounded corner of the cup, see label A in Fig. 4. But in
some cases, the highest stress concentration occurs at the outer side of the cup where contact with the die
wall is about to cease as the compact is ejected, see label B. In the actual process, this phenomenon often
leads to fracture or damage of the specimen during the ejection process. The risk of fracture can be reduced
by rounding-o� the die wall edge at B as done in the present numerical study. Another possibility is to eject
the specimen from the die while it is kept under axial pressure from the punches.

The simple boundary unloading scheme provides guidance on the residual stress distributions but it is not
able to capture the observed maximum principal stress peaks during the ejection process; hence, using this
method may be misleading if fracture is an issue.

Before unloading, the stress states in compacts of materials with di�erent degrees of inter-particle co-
hesive strengths di�er signi®cantly, whereas the porosity distributions are almost identical. The average von
Mises stress in a material with fully sticking contacts is 40±50% higher compared to that for the low co-
hesive strength material, whereas the hydrostatic pressure is much higher in the cup made of the low co-
hesive strength material. However, it has been shown that these di�erences in stress states almost disappear
when the specimens are unloaded.

A material model in which a low or vanishing cohesive strength between the particles is present should be
handled with care, since such a model causes numerical di�culties in pure tension; a failure criterion is
necessary to model material separation. In order to avoid or at least minimize the level of tensile stresses in
the specimen, the compaction route leading to the most uniform porosity and stress distribution from the
combined material model results was chosen for the study of the e�ects of cohesive strength upon material
compaction. It may be expected that for compacts with less uniform porosity distributions, the residual
stress distributions are more sensitive to the degree of inter-particle cohesive strength.
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