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Abstract

A finite strain finite element method is used to examine the residual stresses in a cup-shaped powder compact. Two
rate-independent strain hardening porous material models are used: the combined material model (Fleck, N.A., Kuhn,
L.T., McMeeking, R.M., 1992a. J. Mech. Phys. Solids 40 (5), 1139-1162) and a material model which includes the
dependency of inter-particle cohesive strength (Fleck, N.A., 1995. J. Mech. Phys. Solids 43, 1409-1431). The residual
stress state in the unloaded cup is highly dependent on the compaction process and less dependent on the ejection route.
The maximum principal stress plotted during ejection shows that higher stresses are found during the ejection process
than those found in the completely unloaded specimen. The degree of inter-particle cohesive strength has hardly any
effect on the porosity distributions in the compacts but it has a strong influence on the stress state in the cups before
unloading. However, after unloading, the stress states become quite similar in the two types of materials. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Cold compaction of metal powders is widely used in industries. The ability to produce the required shape
and dimensions of a component with very little or without subsequent machining is the main advantage
compared to other production processes. The manufacture of a powder compacted component may
roughly be divided into two steps. The first step is the compaction of the metal powder and the focus in the
present work will be on cold die compaction where plastic deformation of the powder particles is the major
deformation process. The second step is heat treatment or sintering of the compact in order to weld the
powder particles together so that the component attains the desired strength. Hence, prior to sintering, the
component is very fragile and fracture of the component may occur during ejection from the die.

In the beginning of the compaction process, the porous aggregate typically consists of distinct powder
particles. Later in the process, the particles have deformed, and porosity now exists in the form of isolated
voids. Based on the earlier work by Artz, Ashby and co-workers (Fischmeister et al., 1978; Artz, 1982; Helle
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et al., 1985), Fleck et al. (1992a) proposed a micromechanically based particle model hereafter referred to as
the FKM model. This model is appropriate at high porosities whereas the model of Gurson (1977) is
pertinent for low porosities. In the transition range, a linear combination of the two models is used. This
combined material model has been used earlier to study powder compaction of various simple geometries
(Redanz, 1998) and the compaction of a cup (Redanz, 1999). In the latter, porosity dependence as well as
applied load dependence on parameters such as matrix material behaviour, friction between mould and
powder material, inter-particle cohesive strength, and different compaction schemes are studied. Neither
Redanz (1998) nor Redanz (1999) considers the evolution of stresses during ejection or unloading. The
material model has also been used to study ductile failure of a porous solid (Redanz et al., 1998; Redanz
and Tvergaard, 1999).

In the present work, the compaction of the powder into a cup shape and the subsequent ejection of the
cup have been modelled with a finite element programme in order to find the residual stress distribution in
the green compact. Furthermore, the maximum principal stress during compaction and ejection has been
determined to give insight into the risk of fracture during the process. Different compaction and ejection
routes have been studied by varying the speed ratio of the punches. A straightforward method to model
unloading of a compact numerically is to decrease the value of the nodal forces at the boundary to zero
stepwise. In practice, one or more punches from one end of the compact are removed, and subsequently, the
compact is ejected from the die by the punch at the other end. Both unloading and ejection are studied in
the present paper.

Most material models in the literature are validated by comparing the porosity distribution from the
model with experimental results. However, it has been shown (Redanz, 1999) with a modified version of the
material model of Fleck (1995) that, before unloading, the porosity distributions are almost independent of
the degree of inter-particle cohesion whereas the von Mises stress level is higher for a cohesionless compact
than a compact with full inter-particle cohesion. The opposite tendency is noted for the effect of cohesion
upon the hydrostatic pressure prior to unloading. Thus, justifying the use of a particular model by com-
paring density measurements with computational predictions may not be a critical test. More discrimi-
nating tests need to be devised which would allow the suitability of a given model to be determined. In the
present work, the compacted cups are unloaded and the distribution of residual stresses is determined as a
function of cohesion in order to determine whether the difference in stress states during compaction also
exists after ejection from the die.

2. General equations

The analysis is based on a convected co-ordinate Lagrangian formulation of the field equations where g;;
and G;; are the metric tensors in the reference and current frame, respectively, with determinants g and G.
Here, the initial state is taken as reference. The Lagrangian strain tensor, n;; = 1/2(Gj; — g;;), in terms of the
displacement components on the reference base vectors, u;, is expressed by

My = 3y + u + v ;) (1)

in which (), denotes the covariant derivative.
Equilibrium is expressed in terms of the principle of virtual work which with body forces neglected takes
the form

/‘L’U&’]UdV:/T[Bu,-dS. (2)
v s

Here, V and S are the volume and surface in the reference configuration and 7" are the components of the
specified tractions per unit area in the reference configuration on the reference base vectors
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T' = (17 + i )n; (3)

with n; as the components of the surface normal in the reference state. The relation between the Kirchoff
stress tensor, 7/, and the Cauchy or true stress tensor, ¢, is given by

' =/G/gd", 4)

where G/g denotes the volume change in the porous material.
The incremental constitutive relations for time-independent plasticity are of the form,

o = 1M, (5)

where L7* are the instantaneous moduli and ( ) denotes differentiation with respect to a loading parameter.
The uniaxial true stress—logarithmic strain curve of the matrix material is expressed by the piecewise
power law hardening expression

o/E, o< oy,
=18 03Y ©
y
where ¢ is the logarithmic strain, ¢ is the true stress, gy is the uniaxial yield stress and » is the strain
hardening exponent. The material approaches an elastic-perfectly plastic material for very large n.

Contact and friction between the powder and the tool play an important role in the powder compaction
process. The contact between the powder and the die (or the punch) is modelled by a penalty method using
elastic springs of high stiffness, see ¢.g. Tvergaard (1990). When the material is in contact with the die or
punches, the state of friction may be either sticking or sliding. Sticking contact is modelled the same way as
the contact constraint, whereas frictional sliding is modelled by the following expression

_ [ sen(u)uln  |uTh| < Gy/\/§

= o3 i S v Tor 0 Tu<o .

Here, 7, and 7 are the normal and tangential tractions, respectively, i is the incremental displacement
difference in the tangential direction and u is the friction coefficient. At lower normal pressures, the
Coulomb friction model is used. However, at normal pressures where u7;, exceeds the shear yield stress of
the material, the friction stress is kept constant. The chosen upper limit for the friction stress, ay/ V3, is an
approximation and neglects any dependency upon porosity and strain hardening of the material.

3. Porous material models
3.1. Combined FKM and Gurson material model

The microstructure of the porous aggregate changes during compaction. In the beginning of the process,
the aggregate consists of loose powder particles whereas later in the process the particles have deformed and
a void-like morphology appears.

At high porosities, f > f], a particle-based material model, the FKM model of Fleck et al. (1992a), is
used. It assumes that spherical particles in point contact form the porous material and has the yield
function

b = (274 2) 4 (VB 271—0 8)
M 18 py ' 3 3 py -
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with the macroscopic effective von Mises stress given by o, = (3s;;57/2)"/* in which s/ = 6% — G'6% /3 is the
stress deviator, gy is the current yield stress of the matrix material and p, denotes the yield strength of the
porous material under hydrostatic loading:

py =297(1 - 1)L j}f o )

The highest possible porosity in this model is f = f = 0.36, corresponding to the dense random packing of
equi-sized spheres (Helle et al., 1985). At lower porosities, the contacts start to interact and the particles
become less spherical in shape. Thus, the FKM model is valid at higher porosities only.

The second material model in the combined model is an elastic-strain hardening plastic version of the
model of Gurson (1977). This model is used upon porosities lower than f;, f < f5, and has the following
form:

03 92 (fﬁ 2
¢Gurson - %"_ 2‘]1f COSh{E E} - (1 + (qlf) ) =0. (10)

Here, ¢, and ¢, are adjustable parameters suggested by Tvergaard (1981, 1982), and following his rec-
ommendation, are set to 1.5 and 1.0, respectively, in the present study. The Gurson model is based on the
assumption that porosity exists in the form of spherical voids and the model reduces to J, flow theory when
f=0.

In the transition range, f; > f > f», a linear combination of the FKM and Gurson models is used with
the yield criterion

Deomb = Wrrkm Prrm + Waurson PGurson = 07 (1 1)

where the weight functions are given by Wexm = (f — f2)/(fi — f2) and Wouson = (f1 — f)/(f1 — f2). The
parameters defining the transition range are chosen as (Fleck et al., 1992a), f; = 0.25 and f, = 0.1.

3.2. Material model with variable inter-particle cohesion

Many compaction models (e.g. Gurson, 1977; Shima and Oyane, 1976; Fleck et al., 1992a) assume that
the porous material has equal tensile and compressive strengths, partly because these models have been
developed for the study of ductile fracture. Other models assume a vanishing or a small cohesive strength
between the particles, e.g. soil mechanics models such as the Cam—Clay model (Schofield and Wroth, 1968)
or the Drucker—Prager model (1952). In the compaction of metal powders, the inter-particle cohesive
strength lies between these ideal limits. Fleck (1995) proposed a material model with a variable degree of
inter-particle cohesion and introduced the cohesion factor, #, for which fully sticking contacts are obtained
when # =1 and zero cohesive strength is present at # = 0. In order to obtain a yield surface in closer
agreement with experimental compaction studies of copper powder (Akisanya et al., 1997), a modified
version of material model of Fleck (1995) with variable inter-particle cohesion was suggested (Redanz,
1999). This modified approximate yield surface has the following form:

2

5060, 2\° N AN lgb 16

o=|—-—"4+= YE3k) -1+ ) —1=0. 12
(18Py 3) +<3 Py 9( ’7)( * ) ( )

At fully sticking contacts, n = 1, the modified yield surface reduces to the FKM yield surface. The modified
model (12) is valid at higher porosities only since the combined form (11) with the Gurson model is no
longer physically consistent at low porosities.
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3.3. Basic porous material equations

The direction of the plastic strain is assumed to be normal to the yield surface

o
. P _
Ny = Aa(ﬂf’ (13)

where A is the plastic multiplier and d®/da" gives the direction of the plastic flow. The initiation of plastic
yielding occurs when @ = 0 and @ > 0. During plastic yielding, the consistency condition must be fulfilled

. . ob, 0D, 0D .
@—a—aeae+a—m§0k+§f“v‘mO’M—0 (14)

in which the evolution equation for ¢y is found from equivalent plastic work to be of the form
EE, o"i}
0 S (15)
E—E F(f)om

oM

Here, E, is the slope of the uniaxial true stress—logarithmic strain curve for the matrix material, and F(f")
represents the volume fraction of deforming material, which depends on the yield criterion used. The
contribution from the elastic part of the strain to the total change in volume is neglected compared to the
plastic contribution. Hence, the change in porosity may be written

/= 0=1G6" (16)
Using Egs. (13)-(16), the plastic multiplier, A, is found, and Eq. (13) can be written in the form
1 0@ 00 v,
p_ 1 0P P vy
s = H 3 354 ° {17
with "' as the Jaumann rate of the Cauchy stress tensor and

0P . 09 EE, a¥/ )6‘15

H__<§(l_f)Gv+ﬁE—EtF(f)aM 3ol %)

The total strain is taken to be the sum of the elastic and plastic parts. Thus, from the elastic constitutive
relations (see e.g. the hypo-elastic relations in Hutchinson (1973)) and Eq. (17), the instantaneous moduli
from Eq. (5) are determined.

The dependence of the elastic parameters on porosity can normally be neglected in the modelling of
powder compaction because the plastic strains overwhelm the elastic strains. However, when ejection of the
specimen from the die is studied, elastic unloading of the material occurs, and thus, the elastic material
properties are important. In the present work, Poisson’s ratio is assumed to equal that of the matrix
material, v = vy, and Young’s modulus, E, is assumed to depend linearly on porosity,

-7

E=E + (Ey — E) (19)
where Ey; is Young’s modulus of the matrix material and E; is Young’s modulus of the porous aggregate at
f= f ; the latter is set here to E; = 0.0014E),. This assumption differs slightly from the dependence used by
Fleck et al. (1992b) in the sense that the stiffness of the porous aggregate is not equal to zero at dense
random packing, / = £, but is slightly higher. By choosing a finite initial modulus, E;, the computation time
is decreased significantly and numerical difficulties are avoided. As a consequence, the early elastic stage of
the compaction (at porosities close to f = f) is not modelled, but as the plastic deformation is dominant in
the present work, this has nearly no influence on the results; see also Mesarovic (1999).
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4. Numerical method

In the current state, ", 1,;, etc. satisfy the equilibrium which is expressed in terms of the principle of
virtual work (2). An incrementally linear, forward extrapolation scheme is used to determine the incre-
mental values, ¢, 1> etc. Thus, the principle of virtual work is extended about the current state to the
incremental form

/{fffsn,ﬂrrffa{;Suk,,}dV:/'T"Sul-dS— |:/Tij8nijdV_/Ti8uidS:| (20)
14 ' S r §

with body forces neglected. The term in square brackets corresponds to the principle of virtual work in total
form (2) and thus should equal zero. It is included here in order to prevent the numerical solution from
drifting away from equilibrium due to an accumulation of incremental errors.

The axisymmetric compaction tool and powder material are modelled numerically as shown in Fig. 1(a).
The three punches, Py, P,, and P3;, may be moved independently at different speeds. The powder is filled into
the mould while it is turned upside down, so that, due to gravity, the powder initially forms a cup shape.
Overviews of the die movement sequences in the various compaction and ejection routes are listed in Tables
1 and 2, respectively.

One of the initial finite element meshes is shown in Fig. 1(b). Each mesh used in the present study
consists of 396 isoparametric, eight-noded elements with a total of 1279 nodes. Each element contains four
integration points. For all of the results presented, the powder material is characterized by the material
parameters, oy/E = 0.003, n = 10, v = 1/3, and the initial porosity is f = 0.35. The value of the friction
coefficient, i, from Eq. (7) has been found experimentally for the compaction of a simple cylinder by Kim
et al. (1996) to be 0.17, and this value is used here.
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Fig. 1. (a) The axisymmetric compaction model consists of a die and three individual punches Py, P, and P3, (b) the initial finite element
mesh used for compaction I consists of 396 isoparametric eight noded elements with a total of 1279 nodes.
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Table 1
The various sequences of die movement in Compactions I-111 on the left side of the table* and the total displacements of the punches on
the right side of the table

Displacement of punches Total displacements

P, P, P; Figs. 2-7 Figs. 8-11
Compaction | Uy 0 u uy/R =2.00 -
Compaction II ury 0 duy uy /R =2.51 -
Compaction 111 Ui 0 21,{1” u”]/R =142 u”]/R =0.96

#The die wall is held fixed at all times.

Table 2
An overview of the various sequences of die movement in Ejections I and II*
Step 1 Step 2 Step 3
Ejection 1 P, is taken off P, and P; eject the cup P, is taken off
Ejection 11 P; is taken off P, ejects the cup P, is taken off

#The die wall is held fixed at all times.

5. Results
5.1. The first stage of the process: compaction

The porosity distributions in the powder compacts due to three different compaction routes are shown in
Fig. 2. The outlines of the initial cup geometries are shown with dotted lines, whereas the deformed cup
shapes after unloading are marked with solid lines. In Fig. 2(a), punches P; and P;, from Fig. 1(a), are
moved with the same speed, while the inner punch, P, is held still. This compaction route is referred to as
‘compaction I’ in the following. In ‘compaction II’, the punch on the wall of the cup, P53, is moved with half
the speed of the punch at the bottom of the cup, P;, while P, is held fixed; the resulting porosity distribution
is shown in Fig. 2(b). In ‘compaction III’, the punch P; is moved with twice the speed of Py, while P, is
fixed; see Fig. 2(c) for the resulting porosity distribution. The initial volume of each cup is the same,
whereas the initial geometry differs in each case in order to obtain the same geometry and volume of the
specimens after compaction. For the initial geometries of the cups, see Table 3. The cups have been
compacted to a volume change AV /¥, = 0.22, where AV is the difference between initial and current vol-
ume, and ¥ is the initial volume of the cup, see also Table 1.

It should be noted that the porosity distributions change only slightly during unloading and do not
therefore depend on how the cups are ejected from the die. Hence, the elastic spring-back effect is negligible
in the present study.

In all the three cases, regions with highly compacted material develop at the corners between punches
and die wall due to friction. The effect of double-action pressing is also seen in each of the porosity dis-
tributions. In Fig. 2(a), a region with less compacted material appears in the cup wall midway between the
upper and lower punches. A similar region of reduced compaction exists higher up the cup wall in Fig. 2(b)
and lower down the cup wall in Fig. 2(c): the precise location depends on the velocity ratio between P; and
P;. Due to the geometry of the cup as well as the double action compaction scheme, a region with packed
material at the bottom in the inside of the cup, see point A in Fig. 2(a), and a less compacted region in the
cup wall on the vertical face adjacent to the corner, see point B, are formed. When P, is moved faster than
P3, compaction II in Fig. 2(b), this effect becomes more dominant, whereas it is almost avoided in Fig. 2(c)
where P, is moved with half the speed of P;, compaction III. In general, the porosity gradients in case of
compaction II are higher compared to compaction I whereas compaction III results in the most uniform
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Fig. 2. Curves of constant porosity, f, as results of three different compaction routes at AV /¥, = 0.22: (a) Compaction I, P, and P; are
moved with the same speed while P, is fixed, (b) Compaction II, P; is moved with half the speed of P, while P, is fixed and (c)
Compaction III, P5 is moved with twice the speed of P; while P, is fixed.

Table 3
The various initial cup geometries used for Compactions I to II1*

Initial cup geometries

R/R Ro/R H,/R H, /R
Compaction I 5 9 12 19

Compaction II 5 9 11.26 18.77
Compaction III 5 9 12.84 19.26

#The parameters are defined in Fig. 1(b).

porosity distribution of the three. As shown in Redanz (1999), the average porosity decreases during
compaction, whereas the way this porosity is distributed remains approximately the same until fully dense
regions are formed. Under continued loading, these fully dense regions spread until full densification is
obtained. However, full densification is rarely obtained in practice.

5.2. The second stage of the process: ejection

In the practical powder compaction process, the powder is mixed with a binder to bond the particles
together in order to obtain some degree of inter-particle cohesion. This minimizes the risk of fracture of the
compact during the subsequent ejection. During the compaction process, the areas of particle contacts weld
together and form metallurgical bonds (Dowson, 1990). However, these bonds are fairly weak at process
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temperatures lower than 0.3 times the absolute melting temperature of the powder material (cold com-
paction). Hence, in the present study, brittle fracture during ejection is likely to occur depending on the
maximum principal stress, max(o;).

The simplest way to develop residual stresses in a numerical simulation of compaction is to reduce the
nodal forces at the boundary stepwise to zero; in the following, this is referred to as boundary unloading.
The maximum principal stress normalized by the initial yield stress of the matrix material in tension,
max(o;/ay), is shown for the three different compaction routes and subsequent boundary unloading in Fig. 3.
Unless otherwise stated, the point at which the maximum principal stress occurs is located at the inner
rounded corner of the cup. The solid line, representing compaction I, shows that the maximum principal
stress oscillates about zero during compaction. During boundary unloading, the normalized stress increases
from about zero to approximately 0.4. At each point where the curves change abruptly, either the location
at which the maximum stress has occurred changes or the direction of the maximum principal stress
changes. When compaction II is used, the maximum principal stress is tensile throughout the compaction
process and it increases to max(o;/ay) = 0.95 during boundary unloading which may result in the formation
of a crack at the rounded, inner corner of the cup. During compaction III, the stress is compressive
throughout the process and reaches 0.150, after boundary unloading. As concluded from the discussion of
Fig. 2, compaction III is the optimal compaction route of the three.

In practice, unloading the specimen after die compaction as described above is not possible. The ejection
and handling of the fragile green specimen is often the weakest link in the process of a powder metallurgy
component. The maximum principal stress for the three compaction routes and the subsequent evolution of
the stresses during ejection are shown in Fig. 4. The ejection route, referred to as ejection I, goes as follows:
first, Py is removed, followed by ejection of the specimen from the die by P, and P;. Finally, the inner
punch, P,, is taken out of the cup.

When P; is removed, the maximum principal stress remains approximately zero in the case of com-
paction I until right before the punch is completely removed. Then, the stress increases abruptly to

max o; ! e

06 i 1

04
Compaction II

02 .
/ Compaction I

-02} _
Compaction III ™. .

— 06 1 1 1 1 ; ! 1 1 1

Compaction, AV/V, = 0.22 Boundary unloading

Fig. 3. The maximum principal stress, max(o;/oy), in the specimen during three different compaction routes and subsequent boundary
unloading.
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Fig. 4. The maximum principal stress, max(s;/g,), in the specimen during three different compaction routes and subsequent unloading,
ejection 1.

max(oi/oy) = 0.35. During the ejection of the specimen from punches P, and Ps, the stress increases to a
peak value, max(o;/oy) = 0.43, and decreases afterwards to 0.35. The peak value is reached when the
bottom of the cup is about halfway out of the die. The pressure between the specimen and the punch, P, is
reduced to zero during the ejection, thus, the stress state does not change upon final removal of P,. The
small oscillations of the curve are due to the discreteness of the finite element mesh; each oscillation cor-
responds to a node losing contact with the die wall. This contact transition has been eased by rounding-off
the edge of the die wall with a radius equal to 1.30H,. A smaller radius results in oscillations of higher
amplitude and vice versa.

When P, is taken-off after compaction II, the maximum principal stress increases; thereafter, the maxi-
mum principal stress remains fairly constant at the same level as was found for boundary unloading,
max(oi/oy) = 0.95, during ejection from the die.

The high compressive stress after compaction 111 decreases until it reaches zero when P; is removed. After
having plateaued at zero, the stress increases in tension to max(o;/ay) = 0.15 just before P, is completely
removed, as was also seen for compaction I. A minor stress peak is reached in the beginning of the ejection
and a larger stress peak is attained at the end of the ejection. Again, the oscillations are due to the dis-
creteness of the mesh. As mentioned above, the maximum principal stress is mostly located at the inner,
rounded corner of the cup, see label A in the insert to Fig. 4. However, the large stress peak at the end of
ejection is located in the cup wall in the region following the edge of the die wall as the specimen is ejected,
see label B. This stress increase might easily result in a chipped corner at the top of the cup wall. The stress
concentration by the edge of the die wall is also present in the two other cases, but the trajectories in Fig. 4
refer to the stress state at the inner corner since it is largest. Removal of the inner punch, P,, hardly changes
the stress state. In practice, it is sometimes necessary to eject the specimen from the die with the relative
positions of all punches held fixed; subsequently, the punches are taken-off. This reduces the tensile stresses
during ejection and damage or fracture of the component may be avoided. Furthermore, the edge of the die
wall is rounded-off in order to minimize stress concentrations like that in point B, (Fig. 4). This is also done
in the present numerical study.
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Fig. 5. Curves of constant maximum principal stress, max(o;)/ay, at AV /¥y =0.22, after three different compaction routes and
subsequent unloading, ejection 1.

The stress states in the three specimens after ejection I are shown in Fig. 5. Curves of constant maximum
principal stress normalized by the yield stress of the matrix material, max(c;/ay), are shown for compaction
I, compaction Il, and compaction III in Fig. 5(a)—(c), respectively. For the case of compaction I, the maxi-
mum principal stress attains a maximum value, max(o;/gy) = 0.30, at the inner, rounded corner and is
close to zero elsewhere. The stress distribution as a result of compaction II is similar qualitatively but is
more extreme in value. Here, the principal stress attains values up to 0.9¢,, with a maximum value at the
inner, rounded corner. Also, a stress concentration in the inner, upper edge of the cup wall is present.
Compaction III results in a fairly uniform maximum principal stress distribution and close to zero in
magnitude.

In Fig. 6, the evolution of the maximum principal stresses during the first compaction route, compaction
I, and different subsequent types of unloading are shown. The boundary unloading and ejection I have
already been described above; Ejection II refers to the following: P is taken-off, P; ejects the cup from the
die and then P, is taken out. Removal of P; in the first stage of ejection II results in a larger maximum
stress than removal of P; in the first stage of ejection I. While P, ejects the cup from the die in ejection I,
this high stress remains fairly constant. Unlike ejection I, the removal of the inner punch, P,, in ejection 11
leads to a stress decrease. The boundary unloading results in a higher final maximum principal stress
compared to both ejection routes; however, this stress value is lower than the peak stress observed during
ejection 1.

The influence of the different ejection routes on the residual stress distributions in the powder compacts
obtained with compaction I is illustrated in Fig. 7. It is seen that the distributions for ejection I, Fig. 5(a),
and boundary unloading, Fig. 7(a), are almost identical, whereas the stress state in the cup after ejection 11,
Fig. 7(b), differs from the two others. When P; ejects the compact in ejection II the separation of the inner
punch, P,, and the ejecting punch, Py, is fixed. Thus, the cup is subjected to an applied stress in the axial
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Fig. 6. The maximum principal stress, max(o;/oy), in the specimen during compaction, compaction I, and three different unloading
routes.
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Fig. 7. Curves of constant maximum principal stress, max(o;)/ay, at AV/Vy = 0.22, after compaction I and two different unloading
paths, boundary unloading and ejection II.

direction during ejection which is not the case in ejection 1. For ejection II, this results in higher maximum
principal stresses in the bottom of the cup and a region with entirely compressive stresses just below the
inner rounded corner of the cup. Furthermore, a stress concentration develops in the corner between the die
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wall and the ejecting, lower punch, P;. For all three ejection routes, the residual maximum principal stresses
in the cup walls are mainly tensile but with an enclosed region with material in compression. Ejecting the
specimen from one side or the other affects the residual stress distribution in the present case. However, this
is mainly due to the externally applied axial pressure from the inner punch, P,, during ejection II. In
summary, the simple boundary unloading method provides a useful guide in predicting the residual stress
distribution but it does not capture the evolution of the maximum principal stress during ejection which
may exceed the final value in the specimen when completely ejected from the tool.

5.3. The effect of inter-particle cohesive strength

The effect of inter-particle cohesive strength is now studied with the modified material model (Fleck,
1995; Redanz, 1999). This model is not combined with the Gurson model, thus, it is valid at high porosities
only. The optimal compaction route from the above study, compaction II1, has been used to compact two
cups of powder materials with different inter-particle cohesive strengths to a volume change, AV /¥, = 0.14.
After compaction, the porosity distributions are very similar to the one shown in Fig. 2(c), whereas the
average porosity is higher due to the lower degree of compaction.

The von Mises stress distributions in the cups before unloading are shown in Fig. 8. A material with fully
sticking contacts between the powder particles, # = 1, is shown in Fig. 8(a), and a material with a low
cohesive strength, 7 = 0.2, is shown in Fig. 8(b). It is seen that the relative distributions are somewhat
similar to each other: stress concentrations in the corners between the punches and die wall and at the
rounded edge at the inside of the cup. However, the stress level in the material with fully sticking contacts is
much higher compared to the low cohesive strength powder material. The opposite is the case for the
hydrostatic pressure in the cup before ejection. A similar result was seen in Redanz (1999). As both the von
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Fig. 8. Curves of constant von Mises stress, o./ay, at AV /Vy = 0.14 after compaction III before unloading: (a) fully sticking contacts
between the powder particles, 7 = 1 and (b) low inter-particle cohesive strength, n = 0.2.
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Mises stress and the hydrostatic pressure lead to plastic yielding in a porous solid, it is not surprising that
similar porosity distributions can develop in compacts of materials with different inter-particle cohesive
strengths even though the stress states are different.

The maximum principal stress in the cups during the process is shown in Fig. 9. It is seen that the
stresses in both cases are compressive throughout the compaction. The maximum principal stress in the
material with low cohesive strength is significantly lower than the stress in the fully sticking contacts
powder material. After boundary unloading, it is seen from Fig. 9 that the final maximum principal stress
value in the low cohesive material specimen is tensile and higher than the final value in the cup of fully
sticking contacts powder material. A low tensile stress in a material with little cohesive strength may
rapidly lead to fracture. The stress in the fully sticking material also goes slightly into the tensile region, but
as the material has a high cohesive strength in tension this is of less concern. Throughout both compaction
and unloading of the two types of material, the maximum principal stress was located at the inner rounded
corner of the cup.

The effective stress, o./ay, in the cups after boundary unloading are shown in Fig. 10. Both the level and
the distribution of the von Mises stress are strikingly similar in the two types of material unlike the stress
states before unloading, compare with Fig. 8. Upon unloading, a stress concentration is present in the outer
side of the cup wall midway between the upper and lower punches in the region with less compacted
material. A stress concentration is also present at the inner rounded corner of both cups. For the material
with full cohesive strength between the particles, n = 1, (Fig. 10(a)), the maximum von Mises stress is
located slightly lower than for the case with # = 0.2, (Fig. 10(b)).

Finally, the maximum principal stress contours in the unloaded cups are shown in Fig. 11(a) and (b) for
the material with fully sticking contacts, # = 1, and the material with low inter-particle cohesive strength,
n = 0.2, respectively. In both cases, the maximum principal stresses in the cups are close to zero except in
the region at the inner rounded corner.
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Fig. 9. The maximum principal stress , max(o;/oy), in the specimen during compaction, Compaction I11I, as well as boundary unloading
for a material with fully sticking contacts between the particles, 7 = 1, and a material with a low inter-particle cohesive strength,
n=0.2.
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unloading: (a) fully sticking contacts between the powder particels, 7 = 1 and (b) low inter-particle cohesive strength, n = 0.2.
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6. Discussion

The porous materials used in cold powder compaction are not able to carry large tensile stresses because
of the weak bonds between the powder particles. If a region in the porous aggregate is subjected to tensile
stresses above a certain limit, brittle fracture is likely to occur depending on the maximum principal stress.

We conclude, that compaction with a velocity ratio between the punches P; and P; corresponding to the
ratio of the height of the bottom of the cup, H, — H; (see Fig. 1(b)), and the height of the cup wall, H;,
results in the most uniform and therefore optimal residual stress distribution. The way in which the cup is
ejected is of less consequence for the final residual stress state. However, during the ejection process,
maximum principal stresses occur which are higher than the final maximum stress in the unloaded speci-
men. In particular, the optimal compaction route among the three possibilities presented, compaction 111,
followed by ejection I results in a maximum principal stress during the ejection process which is twice as
high as the final value (see Fig. 4). During most of the compaction and ejection processes, the maximum
principal stress is located in the region at the inner, rounded corner of the cup, see label A in Fig. 4. But in
some cases, the highest stress concentration occurs at the outer side of the cup where contact with the die
wall is about to cease as the compact is ejected, see label B. In the actual process, this phenomenon often
leads to fracture or damage of the specimen during the ejection process. The risk of fracture can be reduced
by rounding-off the die wall edge at B as done in the present numerical study. Another possibility is to eject
the specimen from the die while it is kept under axial pressure from the punches.

The simple boundary unloading scheme provides guidance on the residual stress distributions but it is not
able to capture the observed maximum principal stress peaks during the ejection process; hence, using this
method may be misleading if fracture is an issue.

Before unloading, the stress states in compacts of materials with different degrees of inter-particle co-
hesive strengths differ significantly, whereas the porosity distributions are almost identical. The average von
Mises stress in a material with fully sticking contacts is 40-50% higher compared to that for the low co-
hesive strength material, whereas the hydrostatic pressure is much higher in the cup made of the low co-
hesive strength material. However, it has been shown that these differences in stress states almost disappear
when the specimens are unloaded.

A material model in which a low or vanishing cohesive strength between the particles is present should be
handled with care, since such a model causes numerical difficulties in pure tension; a failure criterion is
necessary to model material separation. In order to avoid or at least minimize the level of tensile stresses in
the specimen, the compaction route leading to the most uniform porosity and stress distribution from the
combined material model results was chosen for the study of the effects of cohesive strength upon material
compaction. It may be expected that for compacts with less uniform porosity distributions, the residual
stress distributions are more sensitive to the degree of inter-particle cohesive strength.
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